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Research related to advanced nuclear rocket propulsion is 
described herein. This work was performed under NASA Grant 
NsG-694 with Mr. Maynard F. Taylor, Nuclear Systems Division, 
NASA Lewis Research Center as Technical Manager. 
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ABSTRACT 

The stability of the mixing region between co-flowing 

streams of different velocity and density has never been 

adequately investigated. The reason for this is that a 

general similarity solution for velocity and density 

profiles has not been available until recently. 

In this work, the solution method of Iessen (1948') 

for the homogeneous case was extended to the heterogeneous 

case in an attempt to find a neutral stability curve for 

the more complex case. The extension was based on the 

recent similarity solution obtained by the authors. 

A branch line of the neutral stability curve was 

found but curves with non-zero amplification and damping 

factors fell on the same side of the neutral stability 

curves. 
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I. INTROIXJCTION 

The hydrodynamic stability of the mixing region be- 

tween parallel streams is. of fundamental interest. Lord 

Rayleigh first discussed this'stability problem as early 

as 1880. The problem is important because the width of 

the mixing region as well as the transport rates differ 

drastically between the cases of.laminar and turbulent 

flow. 

The cases considered here are the homogeneous - both 

streams of the same density, and the heterogeneous - the 

two streams have differing densities. 

The homogeneous case has been discussed extensively 

in the literature because a similarity solution has been 

available to provide complete descriptions of velocity 

profiles in the mixing region. For this case, viscosity 

is the only stabilizing factor since in the inviscid limit 

the flow is inherently unstable. 

The literature studies of the heterogeneous case have 

been limited because no similarity solution for this case 

has been available. The authors, however, in a preceding 

report (67) have obtained a general solution for the 

velocity and density profiles in the mixing region for 

this case. For the heterogeneous case, stabilizing factors 

in addition to viscosity are present. The criteria for 

stability, however, have not been clearly defined. 



The purpose of this report is primarily to use the 

similarity solution (67j in an extension of a method 

reported by Lessen, (4) for the homogeneous case to 

attempt to obtain some stability criterion for the 

heterogeneous case. 



II. BACKGROUND 

II- 1 Homogeneous Case 

The purpose of hydrodynamic stability studies is to 

provide criteria on the stability of uarticular flows. 

As previously mentioned, the viscosity is the only 

stabilizing effect for homogeneous flows and the stab- 

ility criterion is given in terms of a critical Reynolds 

number. 

Hydrodynamic stability studies may be classified as 

inviscid or viscous. An inviscid analysis can answer the 

question of whether a given laminar flow velocity distribu- 

tion is basically stable or unstable. However, the effect of 

viscosity on disturbance, 9 in the flow is not considered., 

Thus an inviscid analysis cannot provide a critical 

Reynolds number. 

Iord Rayleigh," before the turn of the century, 

established two important theorems concerning the stability 

of homogeneous inviscid laminar velocity profiles based on 

the linearized theory of infinitesimal disturbances. The 

first of these states that a point of inflexion in the 

velocity profile c0nstitutes.a necessary condition for 

the occurence of instability. The second theorem states 

that the velocity of propagation of neutral disturbances 

is smaller than the maximum velocity of the mean flow. 
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Tollmien later showed that the existence of a point of 

inflexion in the velocity profile constitutes a necessary 

and sufficient condition for the occurence of instability. 

However, Tollmienls proof is valid only for those flows 

which exhibit a vorticity maximum. While these theorems 

are for an inviscid fluid, they none the less provide in- 

formation of fundamental interest in the study of hydro- 

dynamic stability. 

The problem of the hydrodynamic stability of a homo- 

geneous half-jet flow has received considerable attention. 

Investigations of this problem may be differentiated in 

the following way. LessenJ3 Lin7 and Chiarulli6 in their 

analyses solved the equations of continuity and momentum 

to obtain the velocity distributions in the mixing region. 

All other investigators assumed some form of an analytic 

function to represent the velocity distribution in the 

mixing region. It is well established that the velocity 

profile in the mixing region of a half jet contains a 

point of inflexion. Thus, according to Rayleigh's first 

theorem the flow is unstable in the inviscid case. 

In hydrodynamic stability analyses, the flow in the 

mixing region is first assumed to be stable. The equations 

of continuity and motion are solved to obtain the laminar 

velocity profile in the mixing region. This profile is 

then investigated to determine if it is stable or unstable. 

Lessen3 obtained a similar solution for the velocity 

distribution in the mixing region of a half-jet flow by 



first developing an asymptotic expression which represented 

the solution for large negative values of the independent 

similarity variable 77 = y. 
I--- 

g. In this expression, x 
LJX 

and y are rectangular coordinates, v is the kinematic 

viscosity and U is a reference velocity. He then used 

the method of analytic continuation (Taylor series) to 

numerically integrate his differential equation and obtain \ 
the solution. He next employed the same method to obtain 

a solution of the Orr-Sommerfeld equation of hydrodynamic 

stability. (See section III-2 ). However, Lessen was 

unable to obtain a complete neutral curve because of in- 

accuracies in his solution method at low values of the 

Reynolds number. He thus was not able to give a value 

of the critical Reynolds number for stable flow. The 

partial neutral curve that he obtained indicated that the 

flow is unstable except for very low Reynolds numbers. 

Lessen and Ko16 have very recently extended Lessen's 

earlier work. By employing a slightly different solution 

method they were able to obtain a complete neutral curve 

and a value of the critical Reynolds number of 306, How- 

ever, they showed that if the solution is corrected for 

the non-parallelism in the flow that exists at low 

Reynolds numbers; then the minimum critical Reynolds 

number becomes EJO 

The curve of neutral stability for a homogeneous 

flow is given in a wave number - Reynolds number plane. 
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For very large values of the Reynolds number the curve of 

neutral stability approaches an asymptote. The asymptotic 

value of the wave number for infinite Reynolds number is 

known as the cut-off wave number. The flow is stable for 

disturbances with wave numbers greater than the cut-off 

wave number for all values of the Reynolds number. Lessen 

obtained a value of the cut-off wave number of 0.395. 

Chiarulli6 applied Heisenbergs17 solution method in 

his analysis of the stability of half-jet type flows. 

He used Goertler~s4 numerical method 

to solve the continuity and momentum equations to obtain 

the velocity profiles in the mixing region. A complex 

integral expression was derived from which the eigenvalues 

were to be obtained for the curve of neutral stability. 

The inviscid case (infinite Reynolds number) was first 

considered. A value of the cut-off wave number of 0.51 

was obtained as opposed to Lessen's value of 0.395. The 

complexity of the expressions involved made it impossible 

to obtain a solution for the viscous case and thus a 

critical Reynolds number. 

Lin7 later extended Chiarullils analysis to the case 

of compressible flow. He concluded that when the rela- 

tive speed of the two parallel streams exceeds the sum 

of their velocities of sound, subsonic oscillations can 

not occur. He also showed that a necessary condition 

for the possible occurence of subsonic disturbances is 

that somewhere in the flow field 

6 



II-101 

where y is the transverse coordinate, p is the density and 

w is a dimensionless velocity distribution. The above 

conclusions are from an inviscid analysis. A recent study 

of the inviscid stability of a compressible half-jet type 

flow has been given by Lessen, et. a1.l8 

An analytic function or a &oken line was used to 

approdmate the velocity distribution in the mixing region 

of a half-jet in the stability analyses of Betchov and 

Szewczyk,ls Curle2' and Esch.21 Curle used the function 

u = v tanh (y/L) 

to represent the velocity distribution in the mixing 

region. He obtained a minimum critical Reynolds number, 

R = VI/v of 8.9. 

Betchov and Szewcyk also used the function 

u = uo tanh (y/L) 

to represent the velocity distribution in the mixing 

region. No minimum critical Reynolds number was found. 

However, a spreading layer in which L in the above equa- 

tion increases with time according to the relationship 

was also considered. Using their results for L equal to 

a constant and applying some physical reasoning based on 
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the total amplification available to small perturbations, 

they predicted a critical Reynolds number of 150. 

Esch21 used a piece-wise linear profile in his anal- 

ysis. Unstable disturbances were found at all values of 

the Reynolds number. This problem has also been considered 

by Tatsumi and Gotoh2* and Carrier.23 

II -2 Heterogeneous Case 

The instability of a stratified heterogeneous fluid 

when the different layers are in relative motion is 

classically referred to as Kelvin-Helmholtz instability. 

Consideration of this problem has indicated that stabil- 

izing influences in addition to the viscosity affect the 

stability of the flow. First there is the effect of what 

has been called the "heterogeneity of inertia". This 

arises from the fact that the resistance per unit volume 

to accelerating forces is not constant because of the 

density variation. If the flow takes place in a gravi- 

tational field, an additional effect is apparent. Work 

must be done to effect the interchange of volume elements 

against the gravitational field. The performance of this 

work decreases the net kinetic energy available for trans- 

fer from the mean flow to the fluctuating components. 

The effect of the heterogeneity of inertia has been 

studied by Menkes.24 He considered the flow to be in the 

absence of a gravitational field. He represented the 
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velocity distribution in the mixing region by 

U(Y) = te b/d 

and assumed that the density decreased exponentially with 

height. He demonstrated that disturbances with wave 

numbers larger than the width of the mixing region are 

stable and that a necessary condition for instability is 

that 

should change sign somewhere in the flow field. It is 

interesting to note that this is the same condition as 

that given by Lin7 for the inviscid homogeneous compress- 

ible flow case. Menkes analysis is also for the inviscid 

case. The stability criterion for viscous flow including 

the effect of the heterogeneity of inertia is still given 

in terms of a critical Reynolds number. 

The effect of a gravitational field was first dis- 

cussed by Richardson25 and by Prandtl.26 Richardson's 

discussion concerned the supply of ,energy to and from 

atmospheric eddies, Richardson derived a stratification 

parameter rihich determined if the kinetic energy 

associated with velocity fluctuations would increase. 

This paremeter subsequently became known as the Richardson 

number. Prandtl pointed out that the stability of viscous 

density stratified flows depends on the Richardson number 

'as well as the Reynolds number. The gradient form 

9 



Richardson number is given by 

11-2.1 

where g is the acceleration of gravity, p is the density, 

u is the velocity and y is the coordinate in the direction 

of the gravity field. Defining d as the reference length 

for velocity, l/s as the reference length for density and 

referring all velocities to the reference velocity V; the 

Richardson number may be defined as 

JJ@E 
V2 

11-2.2 

The stability of density stratified flows in the 

presence of a gravity field has been considered by 

Taylor, 27 Goldstein, 26, Drazin,2s MilesSo and others.31932 

These analyses were all for the inviscid case and did not 

include the effect of the heterogeneity of inertia. 

Taylor considered several problems of three of four 

superposed streams. The velocity in each layer was con- 

stant or varied linearly and the density was either con- 

stant or decreased exponentially with height. He con- 

cluded that there might be stability for 

J > l/4 

in the limiting case of a continuous density distribution. 

Goldstein considered a three layer flow. The velo- 

city was constant in the upper and lower layers and varied 

linearly in the middle region. The density decreased 

10 



exponentially with height in the upper two layers and was 

constant in the lower layer. He concluded that disturbances 

can be neutrally stable only if 

and therefore the flow is stable for 

J > l/4 

and unstable for 

J < l/4 

Drazin2 s considered the stability of a shear layer 

between parallel streams with density stratification. The 

velocity distribution in the mixing region between the two 

streams was represented by 

U = V tsnh (y/d) 

and the density was assumed to decrease with height accord- 

ing to the relation 

-BY 
P = PO e 

The gravity field was taken to be perpendicular to the main 

flow. Drazin obtained a curve of neutral stability in a 

wave number - Richardson number plane and concluded from 

tb2.s that the critical Richardson number is l/4, i.e., 

the flow is stable for 

J > l/4 

11 



and unstable for 

J< l/4. 

MilesSo used a hyperbolic tangent function to represent 

both the velocity and the density distribution in the shear 

layer. The slower moving stream corresponded to the higher 

density and the gravitational field was again assumed to 

be perpendicular to the main flow. He also obtai.Aed a 

neutral stability curve in the wave number - Richardson 

number plane and reached the same conclusions as Drazin, 

i.e., stable flow for 

J > l/4 

and unstable flow for 

J c l/4 

The reoccurence of the value of l/4 for the critical 

Richardson number in these analyses has not been satis- 

factorily explained. The following discussion is given 

in Chandrasekhar.33 

If two neighboring volumes in a stratified flow are 

interchanged, the work that must be done against the 

acceleration of gravity, per unit volume, is given by 

6 w =-g6p6z 6 w =-g6p6z 

The kinetic energy which is available to do this work The kinetic energy which is available to do this work 

(per unit volume) is given by (per unit volume) is given by 

1/2p[u2+(u+6u)2 - 1/2p[u2+(u+6u)2 - 1/2(U+U-F6U)2] = 1/4p(6u)2 1/2(U+U-F6U)2] = 1/4p(6U)2 



If the amount of work that must be done exceeds the amount 

of available kinetic energy, the displacement will not 

occur. Thus a sufficient condition for stability is 

l/4 pbW2 < -ggpu 

or equivalently 

(Jq’ < az 
g ($1 

Ri = - > l/4 (for stability) 

P (az 
.dG) 2 

It is apparent that a necessary condition for instability 

is 

Ri< l/4 

In the preceeding analysis, the effect of the density 

change 6p has been neglected in the expression for the 

available kinetic energy. This is equivalent to neglecting 

the effect of the heterogeneity of inertia and considering 

only the effect of the gravitational field. Thus, the con- 

clusion reached in this manner agrees with that obtained 

for the same case by more involved analysis. 

Menkes34 in a later paper considered the stability of 

a density stratified shear layer including both the effect 

of the heterogeneity of inertia and the effect of the 

gravity field. He again assumed the velocity distribution 

to be given by a hyperbolic tangent function and that the 

13 



density decreased exponentially with height. From his 

inviscid analysis he concluded that the value of the 

critical Richardson number depends on the magnitude of the 

non-dimensional density gradient, He obtained a family of 

neutral stability curves with the value of the critical 

Richardson number increasing as the non-dimensional 

density gradient decreases. 

Two neighboring volumes in a stratified flow may again 

be considered to be interchanged. If the effect of the 

density change 6p is included in the expression represent- 

ing the available kinetic energy, it can be demonstrated 

that the value of the critical Richardson number is 

decreased with an increase in the dimensionless density 

gradient, i.e., 

v+ p(6u)2 -I- l/2 spsuu < -g6p6z 

or 
hap 

- l/2 D > l/4 (for stability) 
p($’ hhu 

u az 

Thus, the conclusion reached in this manner agrees qualita- 

tively with the analysis of Menkes. 

Very few analyses of density stratified flows have 

been given that include the effect of viscosity. Shen35 

investigated the stability of laminar boundary layers with 

injection of a foreign gas. Although his analysis included 

viscous effects, he was unable to determine stability 

14 



criteria for the viscous case. From his inviscid solution 

he concluded that injection of a heavier gas would result 

in a more stable laminar boundary layer than injection of 

a lighter gas. 

Schlichting36 considered the stability of a lazuinar 

boundary layer on a flat plate with a density gradient in 

the boundary layer and constant density outside of it. He 

found that the critical Reynolds number increased rapidly 

as the Richardson number increased. The critical Reynolds 

number for a Richardson number of zero (homogenerous flow) 

was found to be 575, while for a Richardson number of 

l/24 the critical Reynolds number became infinite. 

Clearly there is a definite need for additional 

analysis of the problem of the stability of half-jet type 

flows with density stratification. No analysis to date 

has been based on an acceptable similarity solution of the 

equations of continuity, momentum and diffusion. And at 

the present time no one has included the effect of viscosity 

in their analysis. 

15 



III Hydrodynamic Stability Analysis 

III -1 The Disturbance Differential Equations 

The Navier-Stokes equations for incompressible flow 

may be written 

x-direction p[$ + u. + vpy] = - Fx + -$ (p 9x1 f Fy,(~ yy) 

III-l.1 

y-direction p[-$ + us -I- v$j] = - Fy - Pg f $(P 2) + %y-'&G) 

III-l.2 

If molecular diffusion is neglected, the equations of contin- 

uity and diffusion may be written 

zi+zLo 
ax ay 

~+u*.vpy=o at ax 

III-l. 3 

III -1.4 

The most successful method of analyzing the stability 

of laminar flows is called "the method of small disturbances". 

The motion is decomposed into a mean flow and a disturbance 

superimposed upon it. The mean flow is regarded as steady 

16 



and is described by the velocity components u and 7, 

the pressure ? and the density p. The corresponding 

quantities for the non-steady disturbance are denoted by 

ul, VI, p, and p1 respectively. Thus, the instantaneous 

values of the velocity components, the pressure, and the 

density are given by 

u=Ti+u' 

v=';;+v 

P=F+p 

p='F;+p' III-l.5 

Before proceeding, an additional simplifying assumption 

will be made. The mean velocity u and the average density 

2 will be assumed to be a function of y only and the 

transverse velocity component will be assumed to be zero, 

i.e., 

u = u (y) 

p=p (Y> 

v=o III-L6 

Such a flow is described as a "parallel flow". For the two- 

dimensional mixing problem considered here, equations III- 

1.6 are a good approximation at reasonable distances down- 

stream from the beginning of the mixing region, i.e., for 

larger values of the Reynolds number. 

Introducing equations 1X:-1.5 and III-l.6 into 

equation III-l.3, the continuity equation becomes 

17 



is +==() 
ax as 

III'-.l. 7 

Similarly, neglecting quadratic terms in the disturbance 

components, the diffusion equation becomes 

i$ +$f’++! - 
ax +v *a=0 

ay 111-1~8 

Since the mean flow is steady equation 1111 -1.8 may be 

simplified to 

*+-,3l?L 
ax +v ‘=L, 

ay III-l.9 

After linearizing and subtracting the mean flow quanti- 

ties, equations III-l.1 and III-l.2 become 

u p$y+ ii s + v' $1 = - g + ;x (p g, + Fy(p $1 

III-l.10 

The distubance has been assumed to be two dimensional on 

the basis of Yih's extension of Squire's theorem to the 

III-l.11 

viscous heterogeneous case.62 

The continuity equation, as given by equation III-10 7 

may be integrated by introducing a stream function #I such 

that 

III-l.12 

Equations III-l.12 and III-l,7 are based on the 

assumption that the effect of molecular diffusion may be 

neglected. The disturbance stream function $I is assumed 

to be represented by 

18 



+'(x,y,t) = q(y) ei(Y(X-Ct) III-10 13 

where cp(y) is the amplitude function of the fluctuation, a 

is the wave number of the disturbance and c is a complex 

quantity given by 

c = cr + i ci III-l.14 

In this equation cr denotes the yelocity of propagation of 

the wave in the x-direction and ci determines the degree of 

damping or amplification depending on its sign. 

From equations III-l.12 and III-l.13 it follows 

that 

u' = - gL CP*(Y> e i&x-c-t) 

v' = - gL i0! c~(Y) e i&x-ct) III-l.15 

Introducing equations III -1.15 into equations III-l.10 

and III -1.11 and eliminating pressure, the following 

ordinary fourth-order differential equation for the amplitude 

is obtained: 

(U-C)(qJ"-~2(p) - YPcp + -g[( U-c),' - Ul cpl = 
P 

III-~, 16 

The disturbance density is assumed to be represented by 

P'(Y) = R(Y) e &(x-c-L) III-l.17 

Introducing equations III-l.17 and III-l.15 into 

equation III-1.9, the following relationship between 

R(y) and q(y) is obtained: 

19 



~-.---..-_-_- --.-. ----..- 

R(y) = d _ae 
ii-c ay 

Thus, 

III-l.18 

g = icr R(y) e i&x-ct) III-l.19 

or 

lap1 
TQ ax e 

-id=4 = en(s) &5 
n-c ay 

III-l.20 

Substituting equation III-l.20 into equation 

1.16, the disturbance differential equation becomes 

III- 

6-c) (q9”‘cAJ - ?‘qrl - g ;* 3 + g’ [(--c)~-u,~l = 

e--< [qm -2c&" -!- ac4q] III-l.21 

Defining the reference length for velocity as 6 and the 

reference length for density as l/B and referring all 

velocities to a reference velocity U, equation III-l.21 

may be put in the dimensionless form 

(W--~)(&-+J)-~"~-J >' 

-P 
* + LZ [(W-c)q-w's] = 

F . 
= a- III-l.22 

In this equation, J is the Richardson number given by 

3 = gB ti2 
U2 III-l.23 

R is the Reynolds number given by 

R = 4s III-l.24 
V 

20 



and L is the ratio of the scale length for velocity to 

that of density, i.e., 

L=B6 111-1.25 

Equation III-l.22 is the fundamental disturbance 

differential equation for density stratified flows neglecting 

the effect of molecular diffusion. This equation will be 

the starting point for the discu'ssion in the remaining 

sections of this chapter. 

III-2 Homogeneous Case 

In this case, since there is no density variation, 

equation III-l,22 reduces to 

(w-c) (q"-012q) -w"(p = OpvJl 111-2.1 

This equation is commonly referred to as the "Crr-Sommerfeld 

equation". The solution technique to be discussed in this 

section was employed by Lessen4 in his analysis of the 

stability of a homogeneous half-jet flow. 

The independent variable in equation I-11--2.1 is y/6. 

Lessen set the reference length 6 equal to 13 The 

independent variable of equation III-2.1is then 

Y/S = Y/Jvx/u = YJu/vx= v 111-2.2 

In terms of the function f(q), defined in reference 67 

equation II172.1 becomes 
. 

(f'-c)(,"-,", - f"',p)= seep Iv -2o?cJ’+a4~] In-e,3 
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Because equation III-2.3 is of the fourth order, a 

set of four linearly independent solutions exists. Thus, 

<p = ‘qx+ w2 + w3 + +4 III-204 

Lessen showed that the solutions 'ps and 'p, are each un- 

bounded somewhere in the flow field and therefore they 

cannot be considered in the solution of equation 111-2.3. 

He solved for the solutions 'pl and 'p2 by expanding cp in 

powers of (-i/CR). Thus, 

cp =k!o ($$lk dk) 111-2.5 

Substituting this expression into equation III-203 and 

equating like powers of (,i/a R), the following equations 

are obtained for cp (0) and (p(l): 

,O” -ca2+ f’-c -CL, (Jo) = 0 111-2.6 

I III-207 

,An asymptotic expression for f(q), valid for large 

negative values of q., is given by (reference 67), 

f(q) = To + T1 e 
l/2% s77 3/2% 

+ Ta e + TS e -I- . . . 

Since f' < c for large negative ?j, 

&=D2.e 
v=q 

+D2e 
% 3/2srl 

+ D3 e + 0 0 0 

III-2.8 

The various coefficients in this expansion as well as the 
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coefficients of other asymptotic expansions in this 

section are given in Table III-2.1. 

Inserting equation III -2.8 into equation 11~2.6, 

(&OY’~[~2 + DL e 
1mq 

+D2 e 
377 

+ DS e 
3/=?7 

] p = 0 

III-209 

From this equation, it follows that 

(po = eaq + h10 e Lzd-l/2S)~ + ho e(@@)q + ho e(art3i2s)q+. .O 

111-2.10 

Inserting this expansion for cp (0) into equation 

1112.7, 

$1 I" -ca2+ D1 e 
u=, 

+Do 
% _' 

-t- DS e 
3/2&j 

] $1) = 

= p 
1 

+ p2 eh+sh + p6 e(a+314% 

III-2.11 

Thus, 

(p(1) = ecrq + hll + h.21 eca*')7: b1 e(oti-3'2s)q+ .OO 

111-2,12 

Lessen integrated equation 111-2.6 by the method of 

analytic continuation. Because of the singularity in this 

equation at the point where f' = c, Iessen chose the path 

of numerical integration shown in Figure III-2.1. 

It is first necessary to integrate the similarity 

differential equation f"" + l/2 ff" = 0 along this path. 

To 'do this, the asymptotic expression for f(v) given 

above is used to represent f(r)) for q = -6-X. The method 

of analytic continuation 
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Table III-2.1.-Coefficients for Asymptotic 
Solutions of cp (0) and c&l) 

Homogeneous Case 

s=-g CT2 + ,$& 

J&=-G c -$p + v 

E”=-$ 

El=-% 

Ea = - z2 [T2 + -1 

+ T13S2 
-1 

hlo = 

h20 = 

h30 = 

Dl 
05 + (sJ2 

Dlhlo + % 
2a!s+s2 

Dlbo + Dzhlc-, + D3 
-Ta s -I- (Jq2 

G1 = S2(a + 1/4Sj2 hlo 

& = (2Sj2[a -I- 1/2S12 h20 

G3 = (3S>'[a -i- 3/4s12 h-30 

PP1. = EoGl 

PP2 = EoG2 + ElGl 

PP3 = EoG3 + El G2 + EzGl 

hll = DI + PP1 
a s + ($J2 

h31 = Dlhzl + DPhll + D3 + PPa 

3 s + (; s)2 
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IMAGINARY 
AXIS 

I 

. 

Fig. III -2.1 Path of Integration in Complex rl Plane 

is then used to integrate the asymptotic expression to 17 = +6+Oi. 

The asymptotic expression for cp (0) given by equation 

. III-2.10 is then used to represent 50 (0) at q = '-6-3i and 

the method of analytic continuation is employed to integrate 

equation 1112.6 to 77 = +6+oi. 

Finally, using equation 111-2.12 to represent 50 (1) 

for q = -6-3i, equation 111-2.7 may be integrated to 

q = +6toi. Lessen employed a finite difference scheme to 

perform this integration. 

For large positive or negative values of q, equation 

111-2.3 may be written 

cp" - ol" cp = 0 III-20 13 

The asymptotic form of cp is thus given by 

&4 = kr e 
Q77 

-i-k2 e 
-0.T 

III-2.19 

Because the solution must remain bounded, kl = 0, for 

q - 03 and k2 = 0 for 71 -) m. It follows that the proper 
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boundary conditions on cp are 

cp’“ct!cp 773-a 

9’ +-acp q+m 

The function cp is approximated by 

cp = $0) + (2, p 

III-Z?. 15 

111-2.16 

The boundary condition at plus infinity may be written 

(p’(+ co> + a cp (+ a) = 0 

Substituting equation 111-2.16 into equation 

and solving for the Reynolds number R gives 

-_ 
q’(O) (+ 

When up ('I and 

equation 111-2.18 

number. 

cp(l> have been integrated to q = +6+Oi, 

may be used to calculate the Reynolds 

However, the coefficients of the asymptotic 

for ga (0) and cp(l) contain the quantity c, Since 

III-2017 

III-2017 

III-2.18 

expressions 

c is unknown, 

the integration of equation 111-2.3 becomes a trial and 

error process. The curve of neutral stability is desired. 

Therefore ci is set equal to zero. For a given value of the 

wave number a, various values of cr are assumed and 

equations 111-2.6 and III-2.7 are integrated along the 

path shown in Figure 111-2.1. Equation 111-2.18 is then 

used to calculate the Reynolds number. The Reynolds number 

calculated in this way is usually complex. For a given 

value of a, that value of cr for which the Reynolds number 
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calculated from equation 1X-2.18 is real, is the desired 

value of cr. This value of cr along with the corresponding 

values of a and R form a set of eigenvalues. This process 

is repeated for various values of Q to obtain various points 

on the curve of neutral stability in the a-R plane. Curves 

of equal amplification and damping may be similarly obtained 

by setting ci = 0. 

III -3 Heterogeneous Case 

The disturbance differential equation in this case is 

(w-c)($'-~~~) - w'$ - J$' & -I- L?'[(w-C)q'-w'q] = 
-is 

=a+ [q7-2&y , a4q] III- 1.22 

Two additional terms are apparent in this equation as com- 

pared with equation III -2.lwhich is for the homogeneous 

case. The term containing the factor L represents the 

effect of the heterogeneity of the fluid on the inertia and 

the term containing the factor J represents the effect of 

the gravity field (see section II -2). 

The independent variable in equation III -1.22 is y/6. 

If the reference length 6is again set equal to jx 

then the independent variable of equation III-l.22 is 

q, i.e., 

Y/b = Y/LLT= YJu/t/x= q JII -2.2 

In terms of the functions f(q) and p(q) defined in section 

III -2, equation III-l.22 becomes 
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(f'c)(+a2q) - f"'cp - J &, h -J- 

+ L &[(f'-c)q-f"03] = =&P -2&" + a4pl 111-3.1 

Because equation III-3.1 is also of the fourth order, 

a set of four linearly independent solutions exists. How- 

ever, Lessen's analysis for the homogeneous case may be 

extended to show that the cp3and 9i solutions are again each 

unbounded somewheren the flow field and therefore cannot 

be considered in the solution of equation III -3.1. 

Lessen's solution method for the homogeneous case may 

be logically extended to this case. Thus, q is again 

expanded in powers of (-i/aR), i.e. 

cp = kio (-i/aiR) 
k (k) 

cp III -2.5 

Substituting this expression into equation 111-3.1 and 

equating like powers of (-i/aR), the follorring equations 

are obtained for cp (0) and $l): 

$0)” _ [ol’ + &, q(0) - J +$& f&-$ + 

111-3.2 

cp 
(1)" _ car" + &] cp(l) - J &, &2 + 

111-3.3 
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From reference 67, an asymptotic expression for 

f(q) valid for large negative values of q, is given by 

f(q) = To + Tl e 
1/2sq 

f T2 e 
377 3/2m 

+ T3 e f .0. 

Since f1 < c for large negative q, 

f 11 1 

f’-c=Dl e 
v=q 377 3/m 

+-D2 e + D3 e + ..a 111-3.4 

Similarly, 

&+Rle 
v=q % 3/2srl 

+ R2e + R3 e + . . . 111-3.5 

and 

1 1/m 

(f'-c)? 
= AA0 f AAl e 

Since Afl< 1 for large negative q, 

% 3/2sq 
+ AA2 e + AA3 e + ..O 

111-3.6 

11 

* 

1/2w 377 3/2m 
= BBl e +B& e + BB3 e + .00 

III -3.7 

Combining equations 111-3.7 and 111-3~6 gives 

Af" 1 1/2srl srl 3mq 
1-A-f ' (fl_C)2 = ccl e + CC2 e + CC3 e + 00. 

111-3.8 

The various coefficients in these expansions as well as 

the coefficients of other asymptotic expansions in this 

section are given in Table III-301 

Inserting equations III-.3:4, III -3-5 and III:-3.8 

into equation III"-302, 
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Table III-3.1.-Coefficients for Asymptotic 
Solutions of cp (0) and &) 

Heterogeneous Case 

E2 = - E2 [ T2 + p 

A27h2s3 B& =AT2S2 +r 

BB3 _ gA;sS2 + 3A2;1T2S3 + A3yG2S4 

_ .-.. . ..-_.._.-._____. ._.- -., . .,_,__.-.._--. ._ -..-.. . .--. me-. . ..-_ . . . ..-.! 



- 

Table 111-3-l. (Continued) 

Heterogeneous Case 

Dl& = BBlR1 

DD3 = BBx& + B&R1 

A&-J = - $2 

CC1 = A&BBl 

CC3 = AAoBB3 + A&B& + A&BBl 

do = I& + JCCl - mB1 01 

cy s I- @I2 

FE20 = CClhlo + CC2 

m20 = BBl[ cY+qs1 ho 

b. = Dlh 1o -t-D2 -FJ-FF~O - IdEE +,Bb a! --Da) 
2a!s+s2 

m30 = cclbo + CC&lo f CC3 

EE30 = ml( a + s) hzo + BEd a f; 3) a0 

ho = Dd-40 + D2hlo + D3 + JFF30 - L(EE30 + BB3cr-D&hlo-DD3) 
3as+(9)’ 
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Table 111-3.1. (Continued) 

Heterogeneous Case 

Gl = S2 (a f l/4S"2 ho 

& = (2 s)" [a + 1/2s-J2 h.20 

G3 = (3S12 

PP1 = EoGl 

PP2 = EoG2 

PP3 = EoG3 

[a + 3/4sq2 '. h&J 
.- 

+ EIGI. 

+ I&G2 -I- E2G1 

hll = % + JCCl - LBB1 o! -f- PPl 
c! s + wa2 

m21 = BB& -I- 1[2S) -hll 

FF21 = CClhll + tic: 

h21 = Rhl1. +- D2 + JF21 - L(EE21 + BB2 Q! - DDz) + PP2 
2 a s -I- s2 

EE31 = BB& + s) hz1 + BB& + 1/2S) hll 

FF31 = CClh21 -I- C&h11 + CC3 

h31 = DAz1+D2h~~+D3+JFF 3rL(EE3~fBB3wDDzhl~-DDs) + PP3 

3 a S + (3S/2j2 



go(o)“-ca2 
VW 

+ Dl e 
% 

-t-Ike +Dae 
3/W o 

1 cp( ) 

- J[CCl 

+- L[BBl e 
1/2% % 

+B& e +BB3 e 
3/2Srl 

+h e 
3/2Sv (o) 

>cp I=0 l-11-3.9 
or 

p(0)tt-[a2 +- Dl el/“z & esq + D3 e 
3/2S, o 

1 P( ? 

1/2m 
+ CC2 e 

377 
-J [CC1 e , CC3 e 

3/2Sr) o 
1 cp( ) 

1/2s77 3/2Srl 
+ L [BBle + B& es'+ BB3 e ] (&oP 

Sri 3/2S77 
- L [D& e t- DDs e ] p.= 0 III -3.10 

From this equation, it follows that 

&J)= e&q+ hlo e (cd- $3 Q+ ho e(@@) q+ h30 e( a-J 2s)77+ 
111-3.11"' 

Inserting this expansion for cp (0) into equation III'-3.3, 

(JlY’ 
- [cY2 + Dl eU2"': & z?: D3 e3'2s'] cp(1) 

lb% s77 3/W 
- J [CC1 e t CC2 e t CC3 e 3 cp(=) 

1/2sr] srl 3/2S?3 ('>' 
+ L [BBl e t BB2 e t BB3 e 19 

sv 
- L [D& e 6DD3 e 

3/2% 1 
I& ) 

= ppl et+"+ pp2 e(tislf: pP3 et@+@)' 
111-3.12 
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Thus, 

up = e"7: lh1 e 
c&'"+ Al e(cY+s)q 

f 'bl e'4s'qt.. . 

III -3.13 

Using the asymptotic expressions for (O (0) and $=) 

given by equations 111-3.11 and 111-3.13 as a starting 

point, equations 111-3.2 and III-303 may be integrated 

by the method of analytic contin;ation in a manner entirely 

analogous to that outlined in section 111-2. The 

boundary conditions are given again by equations 111-2.150 

Thus, after integrating cp (0) and &) to a large positive 

value of 77, equation 111-2.18 may again be used to 

calculate a Reynolds number. Three special cases may be 

cited. 

Case 1 J = 0, L f 0 

In this case, the value of L may be determined from 

the similarity solution of the boundary layer equations. 

For a given value of X and r, L will be a constant. Once 

the value of L has been determined, the trial and error 

process to determine the curve of neutral stability would 

proceed as outlined for the homogeneous case in section 

III -2. 

Case2 J&O,L=O 

In this case, J would be treated as a parameter. For 

a given value of A and r, J would be specified and a 

neutral stability curve obtained to give a minimum critical 
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Reynolds number. The numerical value of J would then 

be changed and another Reynolds number obtained. In this 

way, the dependence of the minimum critical Reynolds 

number on the Richardson number could be explored. 

Case 3 J f 0, L f 0 

This case would be treated similarly to case 2. The 

only difference being that the value of L would be 

mined from the similarity solution of the boundary 

equations before introducing J as a parameter. 

III-4 Stability Criteria 

deter- 

layer 

Stability criteria for viscous density stratified flows 

are not clearly established. The importance of the Richard- 

son number and the Reynolds number is discussed in section 

11-2. It is generally accepted that the minimum critical 

Reynolds number increases as the Richardson number increases. 

However, stability criteria are generally given as a 

minimum critical Reynolds number for a given value of the 

Richardson number. 

In section III-2 and 111-3, the reference length 

for velocity 6 was defined by 

6 = JLJdJ lllQal 

The reference length for density will also be proportional 

to /x Thus, 

l//3 = (l/L)&z- 111-4.2 
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Bs = L 111-4.3 

The Richardson number J is given by 

III-404 

and the Reynolds number is given by 

R = ~U/V III-405 

It follows from equation 111-4.1, that both the 

Richardson number and the Reynolds number increase with 

J x- 

An increasing Reynolds number tends to be destabilizing 

whereas an increasing Richardson number tends to be 

stabilizing. What determines which of these factors is 

dominating? 

A typical curve showing the increase in the minimum 

critical Reynolds number for increasing Richardson number 

is shown in Figure 111-4.1. 

Such a curve might be obtained for case 3 discussed 

in section 111-3. The factor which must be determined 

is how the Richardson number and the Reynolds number 

change relative to one another as the flow proceeds down- 

stream. 

Equation 111-4.5 may be rewritten 

6+ III -4.6 

Substituting this into equation 111-4.4 gives 
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or 

IB 
I 

UNSTABLE / 

R 

J 

Fig. 111-4.1. Critical Reynolds Number 
as a Function of Richardson Number 

J=RL6=a 
U2 U3 

R=$(- ; ",I J 

111-4.7 

IIIr4.8 

Equation 111-4.8 indicates that the Reynolds number 

R is a linear function of the Richardson number J. The line 

representing the Reynolds number as a function of the 

Richardson number passes through the origin and has a slope 

of 

111-4.9 

If the flow is to be stable, then the point on Figure 

III-&.1 representing the Reynolds number and the Richardson 

number for a certain downstream position must always lie 

below the curve A-B. The flow would be neutrally stable 

for that Reynolds number-Richardson number line which is 
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tangent to the curve A-B. Thus, the slope 

lar line designates the critical value of 

group 

of that particu- 

the dimensionless 

.III-4.9 

for stability. It can be easily shown that the dimension- 

less group (u3/gv) is the product of the Reynolds number 

and the Froude number. 

IV-Results 

The homogeneous stability problem for X = 1.0 was 
considered by'Lessen.4 His solution is discussed in 

section II-l. In section 111-3, an extension of Lessen's 

solution method to the heterogeneous stability problem was 

presented. In that section, three special cases were dis- 

cussed, The case for which J f 0 and L = 0 is not 

particular applicable to the half-jet mixing problem since 

L is usually significantly different from zero. This case 

occurs in meterological applications where the density change 

takes place over a much wider region than the velocity change 

and therefore L is very small. 

The case for which J = 0 and L # 0 corresponds to a 

heterogeneous half-jet type flow with no gravitational field. 

Neutral stability curves for this case are not available. It 

was proposed to calculate curves of neutral stability for 

flows with various density ratios. The solution method of 

Lessen is directly applicable only for this case of x = 1.0, 

i.e., L-l2 = 0. Analytical laminar similarity solutions were 

obtained for x = 1.0 and r = 0, -0.2, -0.4, -0.6 and -0.8. 

The values of the constant S appearing in the asymptotic 

expressions for the solution of the boundary layer equations 

are given in Table IV-l. 
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Table IV-l. Values of the Constant S 

r S 

-‘o .8 0.59063895 
-0.6 0.74360338 
-0.4 0.91674868 
-0,2 l-07730919 

0 1.23849623 
0 (Lessei?) 1.23849316 

.From the analytical similarity solutions, the value 

of L for each value of r was calculated. The width of 

the mixing region for density was defined in a manner entirely 

analogous to the way in which the width of mixing region for 

velocity was defined in reference 67. However, in this case 

the width of the mixing regions for both velocity and 

density was based on a 98% change across the mixing region 

rather than a 90% change as in section V-3. The results 

are shown in Table IV-2. 

Table IV-2. - Values of the Constant L 

r L 

-0.2 0.9% 
-0.4 0.901 
-0.6 0.821 
-0 075 0.727 

39 



It is interesting to note that the value of L decreases 

as the density ratio is increased. The numerical results 

of the similarity solution for these cases are given in 

reference 67 as well as value of (Y, fi, q. and Eo. 

The first neutrai stability curve to be calculated 

was for the case of r = -0.4 corresponding to a density 

ratio of 7 to 3. Using the method outlined in section 

111-3, points on the curve of rieutral stability were 

obtained by trial and error procedure. As the value of 

the wave number c,! was decreased, the eigenvalues of cr and 

R decreased. However, for values of Q less than 0.335, 

eigenvalues for cr and real R could not be found. The 

results obtained are shown in Table IV-3. 

Table IV-3. Eigenvalues of a, cr and R 

a C r R 01 C r R 

0.375 0.5324 238.23+1.03i 0.345 
0.375 0.5325 240.93-l.O?i 0.345 
0.365 0.5175 84.32+O.g2i 0.345 
0.365 0.5179 85.58+0.06i 0.335 
0.365 0.5181 86.22-0.4Oi 0.335 
0.355 0.5015 51.8g+0032i 0.335 
0,355 0.5020 52.43-O.OE 0.325 

0.325 
0.325 

0.4800 35.71+0.83i 
0.4835 37.46+0.02i 
0.4850 38.25-0.4Oi 
0.4580 27.87-f-O. 1Oi 
0.4600 28,42-0.07i 
0.4630 29.28-0.37i 
0.4000 18.45-0.74i 
0.4200 20.89-0.54i 
0.4350 23.18-o. 76i 
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It can be seen from this table that for a = 0.325, 

the imaginary part of R does not change sign as- cr is in- 

creased. Thus, a real eigenvalue of R for 01 = 0.325 was 

not found. The reason for this characteristic is not known. 

A thorough search of the numerical procedure for algebraic 

or typographical errors was made. None were found. The 

eigenvalues interpolated for real R are given in Table 

I-v-4. 

Table IV-Q. Eigenvalues of 01, cr and Real R 

a 'r R 

0.375 0.532 234.6 
0.365 0.518 85.6 
o-355 0.502 52.4 
0.345 0.484 37.5 
0.335 0.459 28.2 

The computer program used to determine the eigenvalues 

in Table IV-4 was able to duplicate Lessen's eigenvalues 

for the homogeneous case exactly. The points on the neutral 

stability curve determined by Lessen for the homogeneous 

case are shown in Figure IV-l. In the same figure, the 

eigenvalues in Table IV-4 are shown. The cut off wave 

number for the flow with a 7 to 3 density ratio appears to 

be less than that for the homogeneous case. However, the 
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Fig. IV-l: Neutral Stability Curves for Half-Jet Type Flows 



two neutral stability curves cross at a value of the wave 

ilumber of about 0.340. 

Unfortunately, it was not possible to determine if the 

critical Reynolds number for the heterogeneous flow is 

higher than that for the homogeneous flow. If this was true, 

then the effect of the "heterogeneity of inertia" could 

definitely be said to be stabilizing. The fact that the 

value of the cut off wave number is less for the heterogeneous 

case is not a true indication of a stabilizing effect unless 

instability to a narrower band of wave-lengths can be said 

to be more stable than instability to a wider band of wave- 

lengths. 

An attempt to calculate curves of equal amplification 

and damping led to very ambiguous results. Because of this 

and the inability to obtain real eigenvalues of R for a 

wide range of wave numbers, attempts to calculate neutral 

stability curves for other density ratios were not made. 

The potential results of these calculations if the reasons 

for the associated difficulties could be eliminated, should 

be very interesting and valuable, Results for the case 

J f 0 and L f 0 would also be of great interest and value. 
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